Uniform strong consistency of a frontier estimator using kernel regression on high order moments

نویسندگان

  • Stephane Girard
  • Armelle Guillou
  • Gilles Stupfler
  • Stéphane Girard
چکیده

We consider the high order moments estimator of the frontier of a random pair, introduced by Girard, S., Guillou, A., Stupfler, G. (2013). Frontier estimation with kernel regression on high order moments. In the present paper, we show that this estimator is strongly uniformly consistent on compact sets and its rate of convergence is given when the conditional cumulative distribution function belongs to the Hall class of distribution functions. AMS Subject Classifications: 62G05, 62G20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[hal-00764425, v2] Uniform strong consistency of a frontier estimator using kernel regression on high order moments

We consider the high order moments estimator of the frontier of a random pair, introduced by Girard, S., Guillou, A., Stupfler, G. (2013). Frontier estimation with kernel regression on high order moments. In the present paper, we show that this estimator is strongly uniformly consistent on compact sets and its rate of convergence is given when the conditional cumulative distribution function be...

متن کامل

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Some Asymptotic Results of Kernel Density Estimator in Length-Biased Sampling

In this paper, we prove the strong uniform consistency and asymptotic normality of the kernel density estimator proposed by Jones [12] for length-biased data.The approach is based on the invariance principle for the empirical processes proved by Horváth [10]. All simulations are drawn for different cases to demonstrate both, consistency and asymptotic normality and the method is illustrated by ...

متن کامل

Strong uniform consistency and asymptotic normality of a kernel based error density estimator in functional autoregressive models

Estimating the innovation probability density is an important issue in any regression analysis. This paper focuses on functional autoregressive models. A residual-based kernel estimator is proposed for the innovation density. Asymptotic properties of this estimator depend on the average prediction error of the functional autoregressive function. Sufficient conditions are studied to provide stro...

متن کامل

UNIFORM IN BANDWIDTH CONSISTENCY OF KERNEL - TYPE FUNCTION ESTIMATORS By

We introduce a general method to prove uniform in bandwidth consistency of kernel-type function estimators. Examples include the kernel density estimator, the Nadaraya–Watson regression estimator and the conditional empirical process. Our results may be useful to establish uniform consistency of data-driven bandwidth kernel-type function estimators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017